

 Navigation

 	
 index

 	
 modules |

 	bbrecorder 1.0.1 documentation

Black Box Recorder

A Python log handler to keep latest logs in memory and only dump them when needed.

About bbrecorder

	author:	Laurent Pointal <laurent.pointal@limsi.fr> <laurent.pointal@laposte.net>

	organization:	CNRS - LIMSI

	copyright:	CNRS - 2015

	license:	New BSD License

	version:	1.0.2

This system is an intermediate spool keeping a limited set of last log records, and calling
other handlers with these log records in case of problem.
It allows to not fill log files, to not spend too much time in logging… but to be able to
retrieve complete up-to-date information in case of exception raising.

It is composed of a main BlackBoxHandler logging handler class, managing the
spool, which must be associated to normal logging handlers using its
add_sub_handler() method.
The box size can be modified via set_size() method (it is initially
set to store 200 log records).

When a situation require the dump of black box logging content, a call to the
crisis() function (module level, proceed with all black boxes) or to a specific
box crisis_emit() method make the box(es) dump their stored logs
using associated standard log handlers.

Usage example:

import bbrecorder
import logging

Create the logger.
logger = logging.getLogger("bbtest")
logger.setLevel(logging.DEBUG)

Create BlackBoxHandler and relative logging stuff.
box = bbrecorder.BlackBoxHandler()
box.set_size(10)
fh = logging.FileHandler('_testresult.log')
ch = logging.StreamHandler()
box.add_sub_handler(fh)
box.add_sub_handler(ch)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
box.setFormatter(formatter)

Associate BlackBoxHandler with our logger.
logger.addHandler(box)

lst = []
for i in range(1000):
 lst.append(i)
 logger.debug('This %d message should go to the log file with %s', i, lst)
 if len(lst)>=7:
 lst = []

Here, we should only get the last 10 logs, with the value of lst corresponding to the
time logs ware created. This is typically called within an exception handler.
bbrecorder.crisis()

The module level full_install() function setup en environment where it
logs Python crashes and allows user to trig black box log emitting via the
Ctrl-C key combination and other signals.

Important

For applications which may hardly crash within low level C Python code,
inside a compiled extension module, when calling a native function via
ctypes… with invalid args, etc.
You must look at faulthandler [https://docs.python.org/3/library/faulthandler.html]
standard module and use it to retrieve tracebacks for threads:

import faulthandler
Create a special file.
outfile = open("python_faulthandler.txt", "w")
Enable the fault handler for the SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL
faulthandler.enable(outfile)

Because generating logs via a BlackBoxHandler may make them loosed if a hard
Python crash occur.

Note that this Python faulthandler tool module appear with Python 3.3, and has
not been backported (yet) to Python 2.7.

Note

The module has been tested with Python 3.4 and 3.5, and made compatible with Python 2
and tested on Python 2.7 for version 1.0.2.

	
class bbrecorder.BlackBoxHandler(**args)

	Specific logging handler to store in memory a limited (rotation of) logs.

By default the black box handler will keep last INITIAL_BOX_SIZE (200) log records.
You can change this value using set_size() method.

Once you created a BlackBoxHandler, you must associate some logging handlers to it
with its add_sub_handler() method.
Unless you specify a formatter for these sub handlers, they will use same formatter as the
black box one.

When you encounter a situation where you want to store/display recent stored log records,
you can call general crisis() function, to extract logs from all black boxes,
or call a specific black box crisis_emit() method.

Warning

By default log records msg is immediately formatted with its args, which are then dismissed.
Two benefits:

	mutable args are formatted with the value they have at log record creation time.

	args are not keep during all life time of the record in the blackbox.

You may delay this formatting calling set_dismiss_record_args() method with
False… but care with delayed logs generation consequences vs mutable
formatting parameters.

	Variables:	
	_boxsize (int) – maximum count of last logs stored, default to 200.

	_dismiss_record_args (bool) – indicator to format log msg with args immediately then dismiss them,
default to True.

	_records (list) – storage of most recent log records.

	_sub_handlers (list) – handlers to use in case of crisis_emit. All these sub handlers will use the
black box filters and formatter, they are directly used to emit the log records.

	
add_sub_handler(handler)

	Add a logging handler to be used to transmit / store / display log records in crisis_emit situation.

	Parameters:	handler (logging.Handler) –

	Returns:	

	
crisis_emit()

	Ensure transmission / storage / display of recent log records via the sub handlers
installed by add_sub_handler() method calls.

Once done, log records storage is cleared (so logs won’t be written multiple times by
the same box).

	
set_dismiss_record_args(dismiss=True)

	Modify the dismiss record args flag to do immediate log record msg format and dimiss args.

	Parameters:	dismiss (bool) – new flag value.

	
set_size(size)

	Modify the count of log records stored by the black box handler.

	Parameters:	size (int) – new maximum count of log records to keep.

	
bbrecorder.crisis()

	Dump black box log records, called in crisis situation (exception…).

You must call this function when you are interested to emit currently stored log records to
normal handlers (file, syslog, etc).
The function loop over created BlackBoxHandler objects and call their respective
crisis_emit() methods.

The crisis_signal() function provides same service callable as a
signal handler [https://docs.python.org/3/library/signal.html] .

	
bbrecorder.crisis_signal(signum, stackframe)

	Callback function to be installed as signal handler (see
Python signal module [https://docs.python.org/3/library/signal.html]).

	
bbrecorder.signal_install(signum, chain=True)

	Install a crisis_signal() handler for signum.

	Parameters:	
	signum (int) – signal number to handle.

	chain (bool) – flag to require call of existing signal handler after crisis one.

	
bbrecorder.full_install()

	Install services to catch / trace hard errors from the Python application.

Intercept keyboard breaks to dump black boxes log records.

 Copyright 2015, Laurent Pointal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	bbrecorder 1.0.1 documentation

 Python Module Index

 b

 			

 		
 b	

 	
 	
 bbrecorder	

 Copyright 2015, Laurent Pointal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	bbrecorder 1.0.1 documentation

Index

 A
 | B
 | C
 | F
 | S

A

 	

 	add_sub_handler() (bbrecorder.BlackBoxHandler method)

B

 	

 	bbrecorder (module)

 	

 	BlackBoxHandler (class in bbrecorder)

C

 	

 	crisis() (in module bbrecorder)

 	crisis_emit() (bbrecorder.BlackBoxHandler method)

 	

 	crisis_signal() (in module bbrecorder)

F

 	

 	full_install() (in module bbrecorder)

S

 	

 	set_dismiss_record_args() (bbrecorder.BlackBoxHandler method)

 	set_size() (bbrecorder.BlackBoxHandler method)

 	

 	signal_install() (in module bbrecorder)

 Copyright 2015, Laurent Pointal.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		bbrecorder 1.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Laurent Pointal.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

